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Abstract

Since the Space Shuttle Accident in 1986, NASA
has been trying to incorporate probabilistic risk
assessment (PRA) in decisions concerning the
Space Shuttle and other NASA projects. One

major study NASA is currently conducting is in the
PRA area in establishing an overall risk model for
the Space Shuttle System. The model is intended

to provide a tool to predict the Shuttle risk and to
perform sensitivity analyses and trade studies
including evaluation of upgrades. Marshall Space

Flight Center (MSFC) and its prime contractors
including Pratt and Whitney (P&W) are part of the
NASA team conducting the PRA study. MSFC
responsibility involves modeling the External Tank

(ET), the Solid Rocket Booster (SRB), the
Reusable Solid Rocket Motor (RSRM), and the

Space Shuttle Main Engine (SSME). A major
challenge that faced the PRA team is modeling the
shuttle upgrades. This mainly includes the P&W
High Pressure Fuel Turbopump (HPFTP) and the

High Pressure Oxidizer Turbopump (HPOTP).
The purpose of this paper is to discuss the various

methods and techniques used for predicting the
risk of the P&W redesigned HPFTP and HPOTP.
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can be performed to introduce more flexibility into
the design process of new hardware.

The two most commonly used methods of
obtaining redesign reliability are probabilistic
structural analysis and similarity analysis. 1 The

focus of this paper will be on probabilistic structural
analysis. However, similarity analysis will be
discussed briefly, and an example of similarity

analysis will be provided.

Similarity Method Reliability Predictions

There are many methods and databases available

to perform risk predictions using similarity analysis.
Some of these methods are based on generic data
such as MIL-STD-217 (used for electronic

components) and NPRD95 (used for non-
electronic components) while others are based on
actual data. 2 Similarity analysis based on actual

data will be discussed in this paper.

Similarity Method Requirements

The following requirements should be taken into
account to perform effective reliability predictions:

Introduction

Redesigned components, subsystems, and
systems are common in the Space Shuttle
program as technology increases and as
unforeseen problems arise. It is desirable to be
able to accurately quantify the reliability of the

redesigned component as well as the subsystem
and system. With the case of the Space Shuttle, it

can be seen how changing the reliability of a single
component affects the overall reliability of the
Space Shuttle. This can be very useful information

when trying to determine which components to
redesign. For example, two redesigned
components both may affect the overall system
reliability equally, but the cost of redesigning those
two components may be considerably different.

Therefore, an accurate redesign reliability system
can be beneficial when allocating funds for various

redesign tasks. Cost and reliability trade studies

1. The predictions must be established within the
concept phase of the design.

2. The most similar component must be used as
the baseline.

3. All applicable historical data shoutd be used.

4. The criticality category for each failure mode
must be established and used.

The predic_ons should be initiated within the

concept phase in coordination with the FMEA
(Failure ModetEffeCts Analysis). The goal of the

predictions, as with all reliability tasks, is to
improve the reliability of the proposed design. The
predictions will assist the relia6ility engineer and

the designer in identifying the reliability concerns

that have the greatest impact on the reliability of
the product. Obviously, in an ideal world all the
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reliability concerns should be addressed, but in the
real world, money and schedules must be taken
into account• Properly performed predictions

provide the means to address the "big hitters".

. Obligates the design engineers to consider
reliability equally with the other system

parameters such as weight, cost, and
performance.

Another important factor in establishing the

predictions early in the design process is to use
them during the trade studies. Design concepts
may be traded very early within the design

process. Therefore, to have an impact, the
predictions, or at least baselines, must be in place
to quantify the reliability concerns during the
trades•

3. Provides guidance in the selection of design

concepts through trade studies.

4. Assists in quantifying the effects of design
variability.

5. Provides an early indication of meeting

reliability goals.

The reliability of the most similar component
should be used as the baseline. Predictions must

take into account similarities as well as differences

between the baseline design and operational
environment. By choosing a baseline component

that is most similar to the proposed design, fewer
variables are present which can impact the

accuracy of the predictions.

All applicable data must be used in developing the
predictions. In the rocket engine area, many

believe only flight data should be used in
establishing the reliability of the engines. However,
ground testing may provide an even better
indication of the true reliability, and the combination

of the two provides a more complete picture.
Obviously, the data have to be properly screened
to eliminate data that are due to ground firings that

do not represent the true design or realistic
environments. Thus very early development

designs and testing to extreme environments
should be eliminated. The criticality category of
each failure should be taken into account as part

of the baseline assessment and reliability
predictions. There is usually confusion with the
reliability categories to anyone not familiar with
them. When asked what is the reliability of a

product, the answer should be: "Which reliability?".

Why Perform the Reliability Predictions?

Reliability engineers are frequently asked: "Why

should we bother spending the time and money in
performing predictions?"; "What good are they?",
"How will they make the product better?"; etc. The
following provide a list of good answers:

. Allows the prioritizing of the high risk failure
modes (more "bang for the buck" in the
design).

6. Enhances the effectiveness of the

development test program.

7. Provides input to the Life Cycle Cost Model.

8. Establishes both scheduled and unscheduled

maintenance requirements.

9. Provides input to the Logistics Support

Analysis.

10. Cuts unscheduled maintenance time to repair

by allowing the design to accommodate the
most unreliable components.

The bottom line is that if timely predictions are

performed, the impact on the design and
subsequent operating costs can be enormously

beneficial to the product.

Similarity Method Prediction Example

To show how this method works in developing a
reliability prediction, consider a fuel turbopump
example. The task is to estimate the reliability of a
new turbopump design. The first step is to

establish the historical data for the reliability
baseline. This number is derived using the
binomial method with a 90% statistical confidence.

This high level of confidence is necessary to
ensure the baseline has a high level of accuracy.
Assume the turbopump failure rate is 50 failures

per 100,000 engine firings. Now the distribution of
the piece part failures is considered to identify the
big hitters needing improvement.

Having identified the turbine blade as the piece
part with the highest failure rate, the causes of
failures must now be identified in order to identify
and quantify the potential fixes. The turbine blades

were the number one contributor with a percentage
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of 35% or 17.5 failures per 100,000 engine firings.
Let's further assume that the distribution for the
turbine blades shows that the number one cause is
thermal stresses which have 57% of the total blade

failures or a rate of 10 per 100,000 firings.

Next, the new design is evaluated and the baseline
failure rates are adjusted. These adjustments, in
order of preference, are established through

testing, analyses, or expert opinion (Delphi
approach). Returning to the example, and
addressing the "heavy hitters" of thermal stresses,

the proposed design is assumed to have modified
the operating temperatures, incorporated a hollow
blade design, and incorporated a material change.

Using the adjustment for each of these Changes,
the cumulative failure rate adjustment is 5.52 per
100,000 engine firings. Therefore, the fuel

turbopump failure rate for the proposed design, if
no other changes are made, drops from the
original 50 to 44.48 failures per 100,000 firings.

Actual Similarity Method Prediction Example

This method has been successfully used on

previous jet engine programs. In the early 1980's,
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the Air Force wanted a jet fighter engine with

increased reliability and lower maintenance
requirements to decrease life cycle costs. A new

engine design and development program was
initiated, and the reliability predictions were
established using the previous engine as the

baseline. These predictions were made
approximately 54 months prior to operation.

As with the previous example, the components

were assessed at the part and failure mode levels.
When the analysis was complete, the predicted
failure rate of the new engine was approximately

25% of the previous engine's failure rate. This
dramatic increase in reliability was due to a very
effective use of lessons learned and reliability data.

When the total operating time of the new engine
reached the point (To) where the prediction was
based, a comparison of the actual failure rate

versus the predicted failure rate was made. A
difference of only 4% existed between the
predicted value and the actual value. Figure 1

shows the previous actuals, the point of estimate,
and the delta between the estimate and the new
actuals.

Old vs New Control Systems

NEW

PREDICTION

COMPLETED

NEW

PREDICTION

at To

New Actuals

976 ' 1977 ' 1978 _ 1979 ' 1980 ' 19111 v 19R2 I 19R3 i 1984 ' 1955 o 1986 i 1997 i 198_ _ 19sg = 1990 ' 1991

T.

Prediction within 4% of actual.

Figure 1 Similarity predictions can provide a high degree of accuracy
Probabilistic Structural Reliability Predictions based on the structural model and the variation of

Unlike similarity analysis, probabilistic structural

analysis uses the actual design structural failure
mode model to calculate reliability predictions. 3

These predictions are not based on similar

components and past test experience. They are

the parameters or input variables in the structural

model. Probabilistic design methodology
considers statistical distributions of the life-

controlling variables thus providing a distribution of

component reliability. Probabilistic design
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methodology must be integrated within an
organization's current design system. 4

Monte Carlo simulation (where feasible) is the
most accurate probabilistic methodology as the

sample size increases to infinity. Monte Carlo
simulation entails characterizing each input or life-

controlling variable with a distribution and then
simulating from this distribution a large number of
times. This large number of combinations of
simulated random variables is then run through the

life equation or design code and a large number of

output or life variables is obtained. A distribution
can then be fit to the output or life variable which
then can be evaluated at the desired point of

interest (failure criterion). This evaluation will
determine the reliability of the component. From

this reliability number, future failures can be

predicted over the course of the life of the
component. A typical Monte Carlo simulation
flowchart is shown in Figure 2.

Some design codes are very complex and time-
consuming thus prohibiting thousands of Monte
Carlo Simulations. In these cases, alternative

methods are applied that use fewer design-codes
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runs to approximate the "true" structural models.

An example of this is a Response Surface Monte
Carlo simulator where a Box Behnken or Central

Composite designed experiment is used to

systematically make a small number of design
code runs in order to fit a response surface to the

output data points, s A Box Behnken design (See

Figure 3) is a three-level design that is used to fit
response surfaces. Points in the design space are

systematically chosen for each random variable (_-

k_, P., p+k_) where k is a constant such that all
main effects, 2-way interactions, and 2 _ order
terms can be estimated (See Table 1).B

A Central Composite design (See Figure 4) is also
a 2 r_ order design that is a factorial or fractional

factorial design with the addition of center points
and star points. This design therefore has five

levels (l_-k_, .cq let, c_, I_+k_) where c_ is the "star"
point that is chosen to allow estimation of the 2 nd
order terms (See Table 2). 7 Unless a response

surface is highly nonlinear, Box-Behnken and
Central Composite designs usually estimate the

"true" response surface very accurately.

Generate Random Values
for the Life Drivers

T
I

Xp

Iterate n Times

Life Equation or
Design Code

Y = f(Xl, X2.... Xp) _ .___p

Output
Variable

Y1

Distribution fit

to the Output/
Design Variable

Y

i

Figure 2 Monte Carlo Flowchart

Table 1 A Three-Variable Box-Behnken Design

Run xl xz x3
1 -1 -1 0
2 -1 1 0
3 1 -1 0
4 1 1 0
5 -1 0 -1

6 -1 0 1
7 1 0 -1
8 1 0 1
9 0 -1 -1
10 0 -1 1
11 0 1 -1
12 0 1 1
13 0 0 0
14 0 0 0
15 0 0 0

4
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Figure 3 A Three Variable Box-Behnken Design
Table 2 A Three-Variable Central Composite Design

/

Run xl x2 x3
1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1
5 1 -1 -1
6 1 -1 1
7 1 1 -1
8 1 1 1
g La 0 0

10 a 0 0
11 0 a 0
12 0 -a 0
13 0 0 _a
14 0 0 a
15 0 0 0
16 0 0 0
17 0 0 0

+ • • + _ =

a.) Cube Portion
(±1, ±1, +-1)

b.) "Star" Portion c.) Center Points
(+-_,o,o) (o,o,o)
(o,±_,o)
(0, 0, ±a)

d.) Cube + Star + Center
(+1, +-1,+1),
(+-_,o,O)
(0, +-_, O)
(o, o,+-(_)
(o, o,o)

Figure 4 A Central Composite Design for Three Variables

n

Box-Behnken Matrix

Xl X2 Xp

-1 0 ... -1
-1 0 ... +1
+1 0 ... -1
+1 0 ... +1

0 -1 .,.

Ameri,

+'1

Design Code/
Software

(e.g., FEM, thermal model)

Inputs: X 1 ... Xp
Output: Y

Outputs

Y1

s and As
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Box-Behnken Matrix

Xl X2 X,

1 -1 0 ... -1

2 -1 0 ... +1

3 +1 0 ... -1

4 +1 0 ... +1

n (_ "-1 iii +'1

Design Code/
Software

(e.g., FEM, thermal model)

Inputs: X 1 ... Xp
Output: Y

Outputs ]

-/
Generate Random Values

for the Life Drivers

x=

I

Iterate n Times

Regression Equation

Approximation of

Design Code

Y = f(X 1, X2 .... Xp)

Output
Variable

YI

Yn

Distribution fit

to the Output/

Design Variable

Y

Figure 5 Response Surface Monte Carlo Flowchart

The complex design code is therefore
approximated with a response surface regression
model and a Monte Carlo simulator can be run

using this regression model. The large number of
iterations using this regression model will be much
faster than using the complex design code.

Finally, a distribution can be fit to the output or life
variable and this distribution can be evaluated

where desired. A flowchart of the Response

Surface Monte Carlo is shown in Figure 5.

Several other probabilistic methodologies exist
when Monte Carlo cannot be used due to time
and/or cost constraints. These methods all

attempt to maintain high accuracy while saving
considerable time in the reliability analysis•

Response Surface Monte Carlo as previously
described is heavily dependent on being able to
find an accurate yet simplified approximation to the
complex design code. The response surface
model can be checked for goodness of fit by

checking several criteria (R 2, residual plots, p-
values, influential points, etc.). If the fitted

response surface model "passes" all of the criteria

for a good fitting model, then it would seem
reasonable to use this approximated model in the
Monte Carlo Simulation. 8

In addition to Response Surface Monte Carlo
simulation, there are many other probabilistic
numerical methods used for calculating

component reliability. These methods can be
grouped into approximately five common groups of

probabilistic methods. The first common group is
simulation methods which contains Monte Carlo

Simulation, Directional Simulation, and Latin

Hypercube Simulation. These methods are usually
the most accurate (especially Monte Carlo

Simulation) but are also often time consuming and
computer intensive. The second group is

response surface/designed experiments which
contains Response Surface Monte Carlo using a
Box Behnken, Central Composite, or a variety of

other designed experiments. These methods are
very accurate if the design code or life equation
can be accurately estimated with a response
surface model. The third group of probabilistic
methods includes First Order Reliability Method
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(FORM), Second Order Reliability Method
(SORM), and Fast Probability Integration (FPI).
The accuracy of these methods decreases as the
number of random variables increases. The fourth

group of probabilistic methods is importance
sampling which includes the Importance Sampling
Method using factor and radius (ISAMF & ISAMR),

Adaptive Importance Sampling 1st Order (AIS1),
and Adaptive Importance Sampling 2 _ Order
(AIS2). These methods sample around the failure

region rather than the entire sample space, thus
saving sampling and simulation time. Finally, the
fifth group of probabilistic methods falls into the
mean-based methods category and includes the
Advanced Mean Value Method (AMV), and the

Advanced Mean Value plus iterations (AMV+).
These methods utilize point expansion and

perturbation techniques to estimate the failure
probability. 9

Probabilistic structural analysis makes use of
structural models to calculate a failure mode

distribution. Each input variable (temperature,

stress, etc.) is considered as a random variable.
These variables are then simulated from a

historically-based or assumed distribution and
input into the structural model. This process is

AIAA-98-1938

repeated a large number of times to produce a
failure mode distribution. This distribution can be

evaluated at various points to determine a

probability of failure (i.e. cumulative failure percent
by 60 missions).

Various failure modes such as low cycle fatigue

(LCF), high cycle fatigue (HCF), fracture life,
margin of safety (M.O.S.), and thermal mechanical

fatigue (TMF) can be analyzed probabilistically. As
long as a structural model can be defined that
predicts these failure modes and the distributions

for all the input variables included in the structural
model can be defined, a probabilistic analysis can

be performed. Input variable distributions may
come from historical data (test data) or

engineering assessment. These distributions may
be Beta, Exponential, Lognormal, Normal, Weibull,

or any other distribution that fits the data accurately
(see Figure 6). The values of the input variables
(stress, temperature, etc.) are then simulated from
these distributions a large number of times forming

many different combinations of the input variables.
These various combinations are then run through

the structural model (LCF, HCF, etc.) to obtain a

distribution of the output variable.

Beta

\

Exponential Lognormal

Normal Weibull

Figure 6 Possible Shapes for the Beta, Exponential, Lognormal, Normal, and Weibull Distributions
Probabilistic Structural Analysis Example

7
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A probabilistic structural analysis example of an
SSME HPOTP 1-2 Turbine Spacer Margin of

Safety (M.O.S.) follows:

M.O.S.= ( °'u_ l)
\ 0"104% (nom)

where:

(:rut s = Ultimate Tensile Strength (KSI)

= Nominal Operating Stress (KSI) for
0"104% (nora)

a 104% Nominal Mission

O'u_s = f(T) where T is Temperature ( °F )

AIAA-98-1938

(M.O.S.) Ultimate. First the variables temperature
and stress (alo.) are simulated from normal
distributions. Then temperature is used in a

regression model (with error) to predict Ultimate
Tensile Strength (UTS). The resulting ultimate

tensile strength and stress values are used in the
Margin of Safety equation to calculate a value for

Margin of Safety. This process is repeated a large
of number of times and a distribution is fit to the

Margin of Safety values.

Figure 7 shows the process used to obtair_" _

failure mode distribution for Margin of

Iteraten Times

Temp

// , ,

I o- I IT.q
MOS = [ _--

\ Ol04

I
I

I
T

Output
Variable

MOS 1

MOS n

Failure Mode
Distribution

MOS

Figure 7 M.O.S. Failure Mode Distribution Flowchart

Uncertainty Distributions
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In the Probabilistic Structural Analysis Example,
the input variables were simulated from normal
distributions or predicted from regression models
to form a distribution of margin of safety (M.O.S.).
This distribution was analyzed to determine the
probability of having a margin of safety less than
zero (which constitutes a failure). Analyzing the
resulting failure distribution for margin of safety at
zero results in a single probability estimate of
failure. To obtain the uncertainty about this
estimate, several methods are proposed.

Hyperparameterizati0n

Each input variable was simulated from a
distribution characterized by one or more
parameters. Placing variation on these
parameters due to uncertainty and running a

Monte Carlo simulation with a different parameter
each time would result in a large number of
different margin of safety failure mode distributions
when finished. Then each failure mode distribution
could be analyzed at zero to obtain the probability
of failure. Therefore, a distribution of failure
probabilities would be obtained. For instance,
instead of saying that the probability of fracturing a
1-2 Turbine Spacer due to negative margin of
safety was 1.0 x 109, it could now be stated that
the range of failureprobabilities was between 1.0 x
1011 to 1.0 x 10Twith 95% confidence. This
method seems the most realistic since the
designer/engineer may not be 100% confident of
the true mean and variation of the minimum and
maximum temperatures and stresses. By allowing
these parameters to vary, some of the uncertainty
that exists in these variables is captured.

Iterate

n Times

if Temp -- N(l_.e) then simulate distribution _ N(I_,o) then_
parameters (_..o) parameters (_.,o-)

.... i.. l I n-I I- I
,L"

Iterate Iterate

N Times N Times

Failure Mode

Oistribution

_eolure Mode ] [ .

Oe,err ,°, /
teen,

1 Fa." I / .....
Figure 8 MOS Uncertain rameterization) I-Iowchar

As shown in Figure 8, first the normal distribution distribution parameters (1_2,a2) for a_o4 (stress at
parameters (P_, al) for temperature are simulated 104% operating conditions) are simulated from
from uniform distributions. Then the normal uniform distributions. The temperature

9
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parameters are then used to simulate a

temperature value from a normal distribution (_1,

oJ. This value of temperature is used to predict a

value of oUTs (ultimate tensile strength)• The c104

parameters are then used to simulate a 0104 value

from a normal distribution (P'2, °2). These values
are used to calculate a margin of safety (M.D.S.)

value. Temperature and OlD4values are repeatedly
simulated and a distribution is fit to the M.O.S.

values. This distribution is evaluated at the failure

criterion to determine the probability of failure.

This entire process is repeated (beginning with
simulating new normal distribution parameters for

both temperature and 0104) until a distribution can

AIAA-98-1938

be fit to the probability of failure values, thus
representing the uncertainty distribution for

probability of failure•

Bootstrapping

Bootstrapping would be a final possibility to obtain
an uncertainty distribution. Bootstrapping, a form
of resampling with replacement from a data set, is

frequently used when there is a lack of data. 1° The
resampling produces many "pseudo" data sets

from the original data set. These new "pseudo"
data sets can then be analyzed to obtain a
distribution of the parameters of interest.

Iterate

n Times

T.:° I t _.....

Iterate

N Times

l
Failure Mode

Distribution

MOS

_ut ] sample n

ble MOS's w/replacement

Sn

Pseudo data

MOS 1 = MOS 1"

MOS 2 = MOS 2"

MOS. =" MOS."

1
Evaluate Failure Mode

Distribution to Determine

Failure Percent

Fail °/o t

i Fail' °/o N

Uncertainty

Distribution

F=a _I,

i

Figure 9 M.D.S. Uncertainty Distribution (Bootstrapping) Flowchart

Resampling with replacement from the failure
mode distribution would produce many different
failure mode distributions which could be analyzed

at the desired point of interest. This method also
captures the uncertainty about the original failure
mode distribution. As shown in Figure 9, first,

temperature and o_04 are simulated from normal

distributions (I.L, o). Then temperature is used to

predict oUTs based on a material regression model.

Margin of Safety (M.O.S.) is calculated using Olo4

and OUTS This process is repeated a large number
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of times and a distribution is fit to the Margin of

Safety (M.O.S.) values.

This distribution is then evaluated at the failure 4.

criterion to determine a failure probability. Then a

new sample with replacement is taken from the
original simulated sample of M.O.S. values and a
distribution is fit to this sample and evaluated at
the failure criterion. This process of resampling

from the original M.O.S. sample is repeated a 5.
large of number of times. Finally, a distribution is
fit to the failure probabilities, thus forming the

uncertainty distribution for the failure probabilities.

Conclusions

Probabilistic structural analysis and similarity 6.

analysis are two common analysis techniques
used for assessing the reliability of redesigned
hardware. Similarity analysis is used when there is
a lack of data concerning the proposed redesigned 7.

component. Probabilistic structural analysis can
be used when a structural model and the

corresponding input variables are well defined.
Monte Carlo Simulation is the most common form 8.

of probabilistic structural analysis and is the most
accurate. However, sometimes Monte Carlo

Simulation cannot be performed due to the
complexity and time consuming nature of a

particular design code. There are many other 9.
probabilistic methods that can be applied in these
situations. Probabilistic structural analysis was

applied to a variety of engineering problems and
the resulting failure mode and uncertainty 10.
distributions were calculated. Overall, probabilistic

structural analysis and similarity analysis can be a
very useful tool for determining the reliability of
redesigned components.
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